地质学类:
1. 金刚石:diamond
2. 石榴子石:garnet
3. 尖晶石:spinel
4. 酸性矿山废水:Acid mine drainage
5. 有机质矿化:Organic matter mineralization
6. 去气通量:CO2 degassing flux CO2
7. 人(种):Home Sapiens
8. 动物群:faunal
9. 显生宙:Phanerozoic
10. 剖面:section
11. 煤层气资源预测:Coalbed methane resources prediction
12. 构造控气:Gas distribution controlled by tectonism
13. 储层特征:reservoir characteristics
14. 碳质薄膜:carbonaceous compressions
15. 分类:classification
16. 宏观藻类:macroalgae
17. 时空分布:spatial-temporal distribution
18. 浮选:Flotation
19. 捕收剂:Collector
20. 磁选:magnetic separation
21. 煤泥水:slime water
22. 沉积模式:deponsitional models
23. 不整合的:discordant
24. 侵入体:intrusions
25. 电子吸附:electron absorption
26. 电子亲合势:electron affinity
27. 电子脱离:electron detachment
28. 电子衍射仪:electron diffraction camera
29. 坡缕石(凹凸棒石):palygorskite
30. 海底硅质软泥:siliceous oozes on the marine floor
31. 硅藻土:diatomaceous Earth
指导教师:王松
信息收集:2023级资源与环境工程学院地质学专业博士研究生
地质工程类:
2. 现场监测:Field monitoring
3. 滑坡:Landslide
5. 层间结构:Interbedded structure
6. 变形破坏特征:Deformation and failure characteristics
7. 遥感:Remote Sensing;
8. 归一化植被指数:Normalized Difference Vegetation Index(NDVI)
9. 归一化水体指数:Normalized Difference Water Index(NDWI)
10. 岩土工程勘察:geotechnical investigation
11. 工程地质测绘:engineering geological mapping
12. 原位测试:in-situ tests
13. 桩身缺陷:pile defects
14. 静载试验:static load test
15. 桩身内力测试:internal force testing of pile shaft
16. 地面沉降:ground subsidence
17. 基坑支护:retaining and protection for excavations
18. 支挡式结构:retaining structure
19. 重力式水泥土墙:gravity cement-soil wall
20. 地基变形允许值:allowable subsoil deformation
21. 复合地基:composite ground,composite foundation
22. 地基处理:ground treatment, ground improvement
23. 水泥粉煤灰碎石桩复合地基:composite foundation with cement-fly ash-gravel piles
24. 萤石矿床:fluorite deposit
25. 区域地质调查(区调):regional geological survey
26. 区域矿产调查(矿调):regional mineral surveying
27. 熔剂用萤石:Fux fluorite
28. 玻陶用萤石:fluorite raw material for glass and ceramics manufacture
29. 矿产预测区:metallogenic prognosis province
30. 找矿标志:prospecting criteria
31. 成矿规律:metallogenic law
32. 内在脆弱性:Intrinsic Vulnerability
33. 地下水脆弱性:Groundwater Vulnerability
34. 净补给量:Net Replenishment
35. 含水介质:Aquifer medium
36. 土壤类型:Agrotype
37. 包气带介质:Vadose zone
38. 源汇项:Source-sink term
39. 斯皮尔曼因子:Spearman factor
40. 边界条件:Boundary condition
41. 铅锌矿床:Pb-Zn deposit
42. C-H-O-S-Pb同位素:C-H-O-S-Pb isotopes
43. 流体包裹体:Fluid inclusion
44. 成矿模式:Metallogenic model
45. 成矿机制:Mineralization regularity
46. 热液系统:hydrothermal system
47. 煤层气:coalbed methane
48. 页岩气:shale gas
49. 地质研究:geological research
50. 勘探开发:exploration and development
指导教师:王松
信息收集:2023级资源与环境工程学院地质工程专业博士研究生
安全工程类:
1. 矿井通风系统:mine ventilation system
2. 通风阻力:mine resistance;
3. 等积孔:equivalent orifice
4. 扩散通风:diffusion ventilation
5. 串联通风:series ventilation
6. 通风网络图:ventilation network chart
7. 煤层瓦斯含量:gas content in coal seam
8. 煤层瓦斯压力:gas pressure in coal seam
9. 吸附瓦斯:absorbed gas
10. 孔隙特征:pore characteristics
11. 微孔填充:microporous filling
12. 单层吸附:monolayer adsorption
13. 矿井瓦斯涌出量:mine gas emission rate
14. 煤矿瓦斯等级:coal mine gas classification
15. 瓦斯动力现象:gas dynamical phenomenon
16. 煤与瓦斯突出:coal and gas outburst
17. 瓦斯风化带:gas weathered zone
18. 地面钻井抽采 gas drainage on ground
19. 保护层:protective seam
20. 煤层瓦斯抽采半径:coal scam gas drainage radius
21. 煤层透气性:gas permeability coefficient of coal seam
22. 煤的自燃倾向性:coal spontaneous combustion tendency
23. 自然发火标志气体:mark gas of spontaneous combustion
24. 安全操作规程:Safety regulations for operations
25. 安全监测:Safety monitoring
26. 安全检查表分析:safety checklist analysis
27. 安全经济学:Safety economics
28. 安全模拟与安全仿真学:Safety simulation and imitation
29. 安全评价:Safety Assessment
30. 爆破粉尘:blasting dust;
31. 爆破有害气体:explosion gas;
32. 冲击波超压安全距离:safety distance of air blast;
33. 爆破振动安全距离:safety distance against blasting vibration;
34. 振动幅值:vibration amplitude;
35. 爆破振动强度:blasting vibration strength;
36. 空气冲击波测试:measurement of shock wave in air;
37. 远程测振系统:remote measurement system of blasting vibration;
38. 爆破振动:blast vibration;
39. 爆破振动波:blasting seismic wave
40. 安全阈值Safe threshold value
41. 爆破片Bursting disc
42. 危险辨识Hazard identification
43. 最佳起爆距离Optimum burst range
44. 扩散系数:diffusion coefficient
45. 数值模型:numerical model
46. 解吸模型:analytical model
47. 瓦斯渗流:gas seepage
48. 孔隙压力:pore pressure
49. 围压:confining pressure
50. 滑脱效应:slippage effect
指导教师:王松
信息收集:2023级资源与环境工程学院安全工程专业博士研究生
矿业工程类:
1. 井田:mine field;
2. 矿区:mining area;
3. 地下开采:underground mining;
4. 采高:mining height;
5. 长壁工作面:longwall face;
6. 除尘效率:collection efficiency;
7. 呼吸性粉尘:respirable dust;
8. 粉尘浓度:dust concentration;
9. 尘肺病:pneumoconiosis;
10. 煤层注水:coal seam infusion
11. 采空区:gob
12. 矿山压力:rock pressure
13. 矿山压力显现:strata behaviors
14. 原岩体:virgin rock mass
15. 围岩:surrounding rock
16. 原岩应力:initial stress
17. 采动应力:mining-induced stress
18. 应力增高区:stress-concentrated area
19. 应力降低区:stress-relaxed area
20. 叠加应力:superimposed stress
21. 自重应力:gravity stress
22. 构造应力:tectonic stress
23. 支承压力:abutment pressure
24. 前支承压力:front abutment pressure
25. 后支承压力:rear abutment pressure
26. 侧支承压力(又称残余支承压力): side abutment pressure
27. 松动压力:broken-rock pressure
28. 变形压力:rock deformation pressure
29. 顶板:roof
30. 底板:floor
31. 伪顶:false roof
32. 直接顶:immediate roof
33. 基本顶:main roof
34. 顶板稳定性:roof stability
35. 坚硬岩层:hard stratum
36. 松软岩层:soft stratum
37. 破碎顶板:fractured roof
38. 人工顶板:artificial roof
39. 再生顶板:regenerated roof
40. 上覆岩层:overlying strata
41. 煤层气:coalbed methane
42. 煤层气资源预测:Coalbed methane resources prediction
43. 控气机理:gas controlling mechanism
44. 构造控气:Gas distribution controlled by tectonism
45. 共生成藏:coupled accumulation
46. 构造演化:tectonic evolution
47. 变质作用:metamorphism
48. 沉积环境:Sedimentary environment
49. 构造煤:tectonically deformed coals
50. 储层特征:reservoir characteristics
51. 储层物性:reservoir physical property
52. 渗透率:permeability
53. 孔裂隙系统:pore-fracture system
54. 孔渗动态:permeability and porosity variation
55. 吸附能力:Adsorption capacity
56. 镜质体反射率:Vitrinite reflectance
57. 煤系烃源岩:Coaly source rocks
58. 生烃动力学参数:Kinetics for petroleum generation
59. 生烃潜力:Hydrocarbon generation potential
60. 岩石力学:rock mechanics
61. 岩石物理表征:petrophysical characterization
62. 分形维数:Fractal dimension
63. 多重分形特征:Multifractal characteristics
64. 渗透压-应力耦合:osmotic pressure and stress coupling
65. 热-流-固耦合模拟:thermal-hydraulic-mechanical coupling simulation
66. 环境影响评估:Environmental impact assessment
67. 资源评估:Resource estimation
68. 采矿操作中的安全协议:Safety protocols in mining operations
69. 勘探与开发:Exploration and development
70. 地质勘测结果:Geological survey findings
71. 矿石加工的优化:Optimized ore processing
72. 可持续采矿实践:Sustainable mining practices
73. 遵守采矿法规:Mining regulations compliance
74. 采矿业趋势:Mining industry trends
75. 矿物提取方法:Mineral extraction methods
76. 采矿项目的风险管理:Risk management in mining projects
77. 尾矿处理策略:Tailings disposal strategies
78. 矿山复垦工作:Mine reclamation efforts
79. 岩土稳定性分析:Geotechnical stability analysis
80. 负责任的采矿实践:Responsible mining practices
81. 矿区社区参与:Community engagement in mining areas
82. 采矿操作中的水资源管理:Water management in mining operations
83. 采矿项目的经济可行性:Economic viability of mining projects
84. 采矿设备维护:Mining equipment maintenance
85. 地应力(地壳应力):crustal stress
86. 水平井:horizontal well
87. 定向井:directional well
88. 直井:straight/vertical well
89. 资源量:quantity of resource
90. 探明储量:demonstrated reserves
91. 采油井:production well
92. 采气井:gas recovery well
93. 游梁式抽油机:beam-pumping unit
1.Aand B by C are scientific challenge to high efficiency on D.
Example: The characteristics of coal reservoir and heterogeneity distribution of coalbed methane controlled by tectonic setting are scientific challenge to high efficiency on coalbed methaneproduction.
2.The research results have certain guiding significance for the exploration of A.
Example:The research results have certain guiding significance for the exploration of shale gas in the complex tectonic regions.
3.A provides a novel idea for the study of B.
Example: The fractal analysis provides a novel idea for the study of shale reservoir properties and lithology.
4.A is one of the most important parameters determining B.
Example: Gas content is one of the most important parameters determining the potential resources and recovery of coalbed methane (CBM).
5.Findings of the study are meaningful for establishing the coupling accumulation mechanism of A and developing a unified exploration and exploitation program.
Example: Findings of the study are meaningful for establishing the coupling accumulation mechanism of the Three Coal Gases and developing a unified exploration and exploitation program.
6.This work presents a comprehensive model for the analysis of A.
Example: This work presents a comprehensive model for the analysis of all the flow regimes in pores and fractures of differing scales, as well as the anisotropy.
7. A, B, and interplay between them are the most important factors for C.
Example:Pore system, permeability, and interplay between them are the most important factors for CBM reservoir evaluation.
8. The findings of this study are particularly meaningful for evaluation of A.
Example:The findings of this study are particularly meaningful for evaluation of deep high rank CBM, such that in the deep areas of the Qinshui Basin.
9.These findings would be essential benchmarks for the related future field applications.
10.As the typical unconventional reservoir, A is believed to be the most promising alternative for the conventional resources in future energy patterns, attracting more and more attention throughout the world.
Example: As the typical unconventional reservoir, shale gas is believed to be the most promising alternative for the conventional resources in future energy patterns, attracting more and more attention throughout the world.
11.It is hoped that this Review would be helpful for the readers to build a systematical overview on A accelerate the development of B.
Example: It is hoped that this Review would be helpful for the readers to build a systematical overview on the transport characteristic of shale gas in microporous/nanoporous media and subsequently accelerate the development of the shale industry.
12.The above results can provide theoretical guidance for increased understanding of the changes in B during A.
Example: The above results can provide theoretical guidance for increased understanding of the changes in a coal reservoir's permeability during coalbed methane drainage.
指导教师:王松
信息收集:2023级资源与环境工程学院矿业工程专业博士研究生
环境工程类:
1. 氯酚:Chlorophenols
2. 滴涕:Dichlorodiphenyltrichloroethane
3. 泡沫聚苯乙烯:Expanded polystyrene
4. 六溴环十二烷:Hexabromocyclododecane
5. 六氯苯:Hexachlorobenzene
6. 六氯环己烷:Hexachlorocyclohexane
7. 高密度聚乙烯:High-density polyethylene
8. 疏水性有机污染物:Hydrophobic organic contaminants
9. 低密度聚乙烯:Low-density polyethylene
10. 线性低密度聚乙烯:Linear low density polyethylene
11. 纳米塑料:Nanoplastics
12. 聚丙烯酸:Polyacrylic acid
13. 聚丙烯酸酯:Polyacrylate
14. 邻苯二甲酸盐:Phthalic acid ester
15. 多环芳烃:Polycyclic aromatic hydrocarbons
16. 聚丙烯酰胺:Polyacrylamide
17. 聚丁二酸丁二酯:Polybutylene succinate
18. 聚对苯二甲酸丁二酯:Polybutylene terephthalate
19. 聚碳酸酯:Polycarbonate
20. 多氯联苯:Polychlorinated biphenyls
21. 聚己内酯:Polycaprolactone
22. 聚乙烯:Polyethylene
23. 苯乙胺:Phenethylamine
24. 五氯苯:Pentachlorobenzene
25. 聚对苯二甲酸乙二酯:Polyethylene terephthalate
26. 全氟烷基化合物:Perfluoroalkyl substances
27. 聚羟基丁酸脂:Polyhydroxybutyrate
28. 聚氯乙烯:Polyvinyl chloride
29. 聚丙烯:polypropylene
30. 聚苯乙烯:Polystyrene
31. 微塑料:Microplastics
32. 生物降解塑料:Biodegradable plastics
33. 根际微生物:Rhizosphere microbiome
34. 挥发性有机化合物:Volatile organic compounds
35. 土壤特性:Soil properties
36. 污染控制:Pollution control
37. 环境保护:Environmental protection
38. This study provides a reference for mixed bacteria to degrade microplastics. 本研究为混合菌降解微塑料提供了参考。
39. Biodegradation of PS microplastics was confirmed using scanning electron microscopy, water contact angle, high-temperature gel chromatography, Fourier transform infrared spectroscopy and thermogravimetric analysis. 通过扫描电镜、水接触角、高温凝胶层析、傅里叶变换红外光谱和热重分析等方法证实了PS微塑料的生物降解作用。
40. The ability of all three strains to grow on medium containing PS microplastics as the sole carbon source was examined. 研究了三种菌株在含PS微塑料作为唯一碳源的培养基上的生长能力。
41. This plastic debris is exposed to the environment and forms microplastics (MPs) with the particle size ≤ 5 mm after UV irradiation, mechanical abrasion, and biological weathering. 这些塑料碎片暴露在环境中,经过紫外线照射、机械磨损和生物风化后形成粒径小于 5 毫米的微塑料(MPs)。
42. In addition, due to their large specific surface area and hydrophobicity, MPs can enrich toxic chemicals, such as heavy metals and persistent organic pollutants, thus affecting the distribution and bioavailability of chemical pollutants in environment. 此外,由于 MPs 具有较大的比表面积和疏水性,可富集重金属和持久性有机污染物等有毒化学物质,从而影响化学污染物在环境中的分布和生物可利用度。
指导教师:王松
信息收集:2023级资源与环境工程学院环境工程专业博士研究生
编辑:编辑部余弦